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Abstract

Semantic role labeling (SRL), also known as shallow seman-
tic parsing, is an important yet challenging task in NLP. Mo-
tivated by the close correlation between syntactic and se-
mantic structures, traditional discrete-feature-based SRL ap-
proaches make heavy use of syntactic features. In contrast,
deep-neural-network-based approaches usually encode the
input sentence as a word sequence without considering the
syntactic structures. In this work, we investigate several pre-
vious approaches for encoding syntactic trees, and make a
thorough study on whether extra syntax-aware representa-
tions are beneficial for neural SRL models. Experiments on
the benchmark CoNLL-2005 dataset show that syntax-aware
SRL approaches can effectively improve performance over
a strong baseline with external word representations from
ELMo. With the extra syntax-aware representations, our ap-
proaches achieve new state-of-the-art 85.6 F1 (single model)
and 86.6 F1 (ensemble) on the test data, outperforming the
corresponding strong baselines with ELMo by 0.8 and 1.0, re-
spectively. Detailed error analysis are conducted to gain more
insights on the investigated approaches.

Introduction
Semantic role labeling (SRL), also known as shallow se-
mantic parsing, is an important yet challenging task in NLP.
Given an input sentence and one or more predicates, SRL
aims to determine the semantic roles of each predicate,
i.e., who did what to whom, when and where, etc. Seman-
tic knowledge has been proved informative in many down-
stream NLP applications, such as question answering (Shen
and Lapata, 2007; Wang et al., 2015), text summarization
(Genest and Lapalme, 2011; Khan, Salim, and Jaya Kumar,
2015), and machine translation (Liu and Gildea, 2010; Gao
and Vogel, 2011).

Depending on how the semantic roles are defined, there
are two forms of SRL in the community. The span-based
SRL follows the manual annotations in the PropBank
(Palmer, Gildea, and Kingsbury, 2005) and NomBank (Mey-
ers et al., 2004) and uses a continuous word span to be a se-
mantic role. In contrast, the dependency-based SRL fulfills
a role with a single word, which is usually the syntactic or
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Figure 1: Example of dependency and SRL structures.

semantic head of the manually annotated span (Surdeanu et
al., 2008).

This work follows the span-based formulation. Formally,
given an input sentence w = w1...wn and a predicative word
prd = wp (1 ≤ p ≤ n), the task is to recognize the seman-
tic roles of prd in the sentence, such as A0, A1, AM-ADV,
etc. We denote the whole role set as R. Each role corre-
sponds to a word span of wj ...wk (1 ≤ j ≤ k ≤ n). Taking
Figure 1 as an example,“Ms. Hag” is the A0 role of the pred-
icate “plays”.

In the past few years, thanks to the success of deep
learning, researchers has proposed effective neural-network-
based models and improved SRL performance by large
margins (Zhou and Xu, 2015; He et al., 2017; Tan et al.,
2018). Unlike traditional discrete-feature-based approaches
that make heavy use of syntactic features, recent deep-
neural-network-based approaches are mostly in an end-to-
end fashion and give little consideration of syntactic knowl-
edge.

Intuitively, syntax is strongly correlative with semantics.
Taking Figure 1 as an example, the A0 role in the SRL struc-
ture is also the subject (marked by nsubj) in the dependency
tree, and the A1 role is the direct object (marked by dobj).
In fact, the semantic A0 or A1 argument of a verb predicate
are usually the syntactic subject or object interchangeably
according to the PropBank annotation guideline.

In this work, we investigate several previous approaches
for encoding syntactic trees, and make a thorough study on
whether extra syntax-aware representations are beneficial
for neural SRL models. The four approaches, Tree-GRU,
Shortest Dependency Path (SDP), Tree-based Position Fea-
ture (TPF), and Pattern Embedding (PE), try to encode use-
ful syntactic information in the input dependency tree from
different perspectives. Then, we use the encoded syntax-



aware representation vectors as extra input word representa-
tions, requiring little change of the architecture of the basic
SRL model.

For the base SRL model, we employ the recently proposed
deep highway-BiLSTM model (He et al., 2017). Consider-
ing that the quality of the parsing results has great impact on
the performance of syntax-aware SRL models, we employ
the state-of-the-art biaffine parser to parse all the data in our
work, which achieves 94.3% labeled parsing accuracy on the
WSJ test data (Dozat and Manning, 2017).

We conduct our experiments on the benchmark CoNLL-
2005 dataset, comparing our syntax-aware SRL approaches
with a strong baseline with external word representations
from ELMo. Detailed error analyses also give us more in-
sights on the investigated approaches. The results show that,
with the extra syntax-aware representations, our approach
achieves new state-of-the-art 85.6 F1 (single model) and
86.6 F1 (ensemble) on the test set, outperforming the cor-
responding strong baselines with ELMo by 0.8 and 1.0, re-
spectively, demonstrating the usefulness of syntactic knowl-
edge.

The Basic SRL Architecture
Following previous works (Zhou and Xu, 2015; He et al.,
2017; Tan et al., 2018), we also treat the task as a sequence
labeling problem and try to find the highest-scoring tag se-
quence ŷ.

ŷ = argmax
y∈Y(w)

score(w,y) (1)

where yi ∈ R′ is the tag of the i-th wordwi, and Y(w) is the
set of all legal sequences. Please note that R′ = ({B, I} ×
R) ∪ {O}.

In order to compute score(w,y), which is the score of a
tag sequence y for w, we directly adopt the architecture of
He et al. (2017), which consists of the following four com-
ponents, as illustrated in Figure 2.

The Input Layer Given the sentence w = w1...wn and
the predicate prd = wp, the input of the network is the com-
bination of the word embeddings and the predicate-indicator
embeddings. Specifically, the input vector at the i-th time
stamp is

xi = embwordwi
⊕ embprdi==p (2)

where the predicate-indicator embedding embprd0 is used
for non-predicate positions and embprd1 is used for the p-
th position, in order to distinguish the predicate word from
other words, as shown in Figure 2.

With the predicate-indicator embedding, the encoder
component can represent the sentence in a predicate-specific
way, leading to superior performance (Zhou and Xu, 2015;
He et al., 2017; Tan et al., 2018). However, the side effect
is that we need to separately encode the sentence for each
predicate, dramatically slowing down training and evalua-
tion.

The BiLSTM Encoding Layer Over the input layer, four
stacking layers of BiLSTMs are applied to fully encode
long-distance dependencies in the sentence and obtain the
rich predicate-specific token-level representations.
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Figure 2: The basic SRL architecture.

Moreover, He et al. (2017) propose to use highway con-
nections (Srivastava, Greff, and Schmidhuber, 2015; Zhang
et al., 2016) to alleviate the vanishing gradient problem, im-
proving the parsing performance by 2% F1. As illustrated in
Figure 2, the basic idea is to combine the input and output of
an LSTM node in some way, and feed the combined result
as the final output of the node into the next LSTM layer and
the next time-stamp of the same LSTM layer.

We use the outputs of the final (top) backward LSTM
layer as the representation of each word, denoted as hi.

Classification Layer With the representation vector hi of
the word wi, we employ a linear transformation and a soft-
max operation to compute the probability distribution of dif-
ferent tags, denoted as p(r|w, i) (r ∈ R′).

Decoder With the local tag probabilities of each word,
then the score of a tag sequence is

score(w,y) =

n∑
i=1

log p(yi|w, i) (3)

Finally, we employ the Viterbi algorithm to find the
highest-scoring tag sequence and ensure the resulting se-
quence does not contain illegal tag transitions such as
yi−1 = BA0 and yi = IA1.

The Syntax-aware SRL Approaches
The previous section introduces the basic model architecture
of SRL, and in this section, we will illustrate how to encode
the syntactic features into a dense vector and use it as extra
inputs. Intuitively, dependency syntax has a strong correla-
tion with semantics. For instance, a subject of a verb in de-
pendency trees usually corresponds to the agent or patient of
the verb. Therefore, traditional discrete-feature based SRL
approaches make heavy use of syntax-related features. In
contrast, the state-of-the-art neural network based SRL mod-
els usually adopt the end-to-end framework without consult-
ing the syntax.

This work tries to make a thorough investigation on
whether integrating syntactic knowledge is beneficial for
state-of-the-art neural network based SRL approaches. We
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Figure 3: Bi-directional (bottom-up and top-down) Tree-
GRU.

investigate and compare four different approaches for en-
coding syntactic trees.
• The Tree-GRU (tree-structured gated recurrent unit) ap-

proach globally encodes an entire dependency tree once
for all, and produces unified representations of all words
in a predicate-independent way.

• The SDP (shortest dependency path) approach considers
the shortest path from the focused word wi and the predi-
cated wp, and use the max-pooling of the syntactic labels
in the path as the predicate-specific (different from Tree-
GRU) syntax-aware representation of wi.

• The TPF (tree position feature) approach considers the
relative positions of wi and wp to their common ancestor
word in the parse tree, and use the embedding of such
position features as the representation of wi.

• The PE (pattern embedding) approach classifies the rela-
tionship between wi and wp in the parse tree into several
pre-defined patterns (or types), and use the embeddings
of the pattern and a few dependency relations as the rep-
resentation of wi.

The four approaches encode dependency trees from different
perspectives and in different ways. Each approach produces
a syntax-aware representation of the focused word.

Formally, we denote these representations as xsyn
i for

word wi. We treat these syntactic representations as the ex-
ternal model input, and concatenate them with the basic in-
put xi. In the following, we introduce the four approaches
in detail.

The Tree-GRU Approach
As a straightforward method, tree-stuctured recurrent neu-
ral network (Tree-RNN) (Tai, Socher, and Manning, 2015;
Chen et al., 2017) can globally encode a parse tree and re-
turn syntax-aware representation vectors of all words in the
sentence. Previous works have successfully employed Tree-
RNN for exploiting syntactic parse trees for different tasks,
such as sentiment classification (Tai, Socher, and Manning,
2015), relation extraction (Miwa and Bansal, 2016; Feng et
al., 2017) and machine translation (Chen et al., 2017; Wang
et al., 2018).

Following Chen et al. (2017), we employ a bi-directional
Tree-GRU to encode the dependency tree of the input sen-
tence, as illustrated in Figure 3.

The bottom-up Tree-GRU computes the representation
vector h↑i of the word wi based on its children, as marked
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Figure 4: The SDP approach: where the blue line marks the
path from the focused word “Ms.” to the common ancestor
“plays”, and the red line is the path from the predicate to the
ancestor.

by the red lines in Figure 3. The detailed equations are as
follows.

h̄↑i,L =
∑

j∈lchild(i)

h↑j , h̄↑i,R =
∑

k∈rchild(i)

h↑k

ri,L = σ(WrLli + UrLh̄↑i,L + VrLh̄↑i,R)

ri,R = σ(WrRli + UrRh̄↑i,L + VrRh̄↑i,R)

zi,L = σ(WzLli + UzLh̄↑i,L + VzLh̄↑i,R)

zi,R = σ(WzRli + UzRh̄↑i,L + VzRh̄↑i,R)

zi = σ(Wzli + Uzh̄↑i,L + Vzh̄↑i,R)

ĥ↑i =tanh
(
Wli+U(ri,L�h̄↑i,L)+V(ri,R�h̄↑i,R)

)
h↑i = zi,L � h̄↑i,L + zi,R � h̄↑i,R + zi � ĥ↑i ,

(4)

where lchild/rchild(.) means the set of left/right-side
children, li is the embedding of the syntactic label between
wi and its head, and Ws, Us and Vs are all model parame-
ters.

Analogously, the top-down Tree-GRU computes the rep-
resentation vector h↓i of the word wi based on its parent
node, as marked by the blue lines in Figure 3. We omit the
equations for brevity.

We use the concatenation of the two resulting hidden vec-
tors as the the final representation of the word wi:

xsyn
i = h↑i ⊕ h↓i (5)

The SDP Approach
SDP-based features have been extensively used in traditional
discrete-feature based approaches for exploiting syntactic
knowledge in relation extraction. The idea is to consider the
shortest path of two focused words in the dependency tree,
and extract path-related features as syntactic clues.

Xu et al. (2015) first adapt SDP into the nerual network
settings in the task of relation classification. They treat the
SDP as two sub-paths from the two focused entity words to
their lowest common ancestor, and run two LSTMs respec-
tively along the two sub-paths to obtain extra syntax-aware
representations, leading to improved performance.

Directly employing LSTMs on SDPs leads to pro-
hibitively efficiency problem in our scenario, because we
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Figure 5: Example of Tree-based Position Feature. The
number-tuples with brackets are relative positions of TPF.

have O(n) paths given a sentence and a predicate. There-
fore, we adopt the max pooling operation to obtain a repre-
sentation vector over an SDP. Following Xu et al. (2015), we
divide the SDP into two parts in the position of the lowest
common ancestor, in order to distinguish the directions, as
shown in Equation 6 and Figure 4.

xsyn
i = MaxPool

j∈path(i,a)
(lj)⊕ MaxPool

k∈path(p,a)
(lk) (6)

where path(i, a) is the set of all the words along the path
from the focused word wi to the lowest common ancestor
wa, and path(i, a) is for the path from the predicate wp

to wa; lj is the embedding of the dependency relation label
between wj and its parent.

The TPF Approach
Collobert et al. (2011) first propose position features for the
task of SRL. The basic idea is to use the embedding of the
distance (as discrete numbers) between the predicate word
and the focused word as extra inputs.

In order to use syntactic trees, Yang et al. (2016) extend
the position features and propose the tree-based position fea-
tures (TPF) for the task of relation classification.

In this work, we directly adopt the TPF approach of
Yang et al. (2016) for encoding syntactic knowledge.1 Fig-
ure 5 gives an example. The number pairs in the parentheses
are the TPFs of the corresponding words. The first number
means the distance from the predicate in concern to the low-
est common ancestor, and the second number is the distance
from the focused word to the ancestor. For instance, sup-
pose “Ms.” is the focused word and “plays” is the predicate.
Their lowest common ancestor is “plays”, which is the pred-
icate itself. There are 2 dependencies in the path from “Ms.”
to “plays”. Therefore, the TPF of “Ms.” is “(0, 2)”.

Then, we embed the TPF of each word into a dense vec-
tor through a lookup operation, use it as the syntax-related
representation.

xsyn
i = embTPFfi (7)

where fi is the TPF of wi.

1Yang et al. (2016) propose two versions of TPF. We directly
use the Tree-based Position Feature 2 due to its better performance.
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........
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Figure 6: Patterns used in this work.

Train Dev WSJ Test Brown Test
#Sent 39,832 1,346 2,416 426
#Tok 950,028 32,853 56,684 7,159
#Pred 90,750 3,248 5,267 804
#Arg 239,858 8,346 14,077 2,177

Table 1: Data statistics of the CoNLL-2005.

The PE Approach
Jiang et al. (2018) propose the PE approach for the task of
treebank conversion, which aims to convert a parse tree fol-
lowing the source-side annotation guideline into another tree
following the target-side guideline. The basic idea is to clas-
sify the relationship between two given words in the source-
side tree into several pre-defined patterns (or types), and use
the embedding of the pattern and a few dependency relations
as the source-side syntax representation.

In this work, we adopt their PE approach for encoding
syntactic knowledge. Figure 6 lists the patterns used in this
work. Given a focused word wi and a predicate wp, we
first decide the pattern type according to the structural re-
lationship between wi and wp, denoted as pt(i, p). Taking
wi =“Ms.” and wp = “plays” as an example, since “Ms.” is
the grandchild of “plays”, then the pattern is “grandchild”.

Then we embed pt(i, p) into a dense vector embPEpt(i,p).
We also use the embeddings of three highly related syntactic
labels as extra representations, i.e., li, la, lp, where la is the
syntactic label between the lowest common ancestor wa and
its father. Then, the four embeddings are concatenated as
xsyn
i to represent the structural information of wi and wp in

a dependency tree.

xsyn
i = embPEpt(i,p) ⊕ li ⊕ la ⊕ lp (8)

Experiments
Settings
Data Following previous works, we adopt the CoNLL-
2005 dataset with the standard data split: sections 02-22 of
the Wall Street Journal (WSJ) corpus as the training dataset,
section 24 as the development dataset, section 23 as the in-
domain test dataset, sections 01-03 of the Brown corpus
as the out-of-domain test dataset (Carreras and Màrquez,
2005). Table 1 shows the statistics of the data.



WSJ Test Brown Test Combined

Methods P R F1 Comp. P R F1 Comp. F1

Single

Baseline (He et al., 2017) 83.1 83.0 83.1 64.3 72.9 71.4 72.1 44.8 81.6
Baseline (Our re-impl) 83.4 83.0 83.2 64.9 72.3 70.8 71.6 44.3 81.6

Tree-GRU 83.9 83.6 83.8 65.2 72.9 71.1 72.3 44.9 82.2
SDP 84.2 83.9 84.0 65.9 74.0 72.0 73.0 45.2 82.6
TPF 84.3 83.8 84.1 65.9 73.7 72.0 72.9 45.5 82.6
PE 83.7 83.8 83.8 65.3 73.4 72.5 73.0 46.1 82.3

Single+ELMo

Baseline 86.3 86.2 86.3 69.4 75.2 74.3 74.7 48.1 84.8
Tree-GRU 86.2 86.2 86.2 68.9 77.9 75.6 76.7 50.8 84.9

SDP 86.9 86.7 86.8 70.2 78.0 76.3 77.1 52.4 85.5
TPF 87.0 86.8 86.9 70.4 77.6 75.9 76.8 51.6 85.6
PE 86.5 86.3 86.4 69.6 77.4 76.4 76.9 51.5 85.1

Ensemble
5× Baseline (He et al., 2017) 85.0 84.3 84.6 66.5 74.9 72.4 73.6 46.5 83.2
5× Baseline (Our re-impl) 84.6 84.0 84.3 66.4 74.9 72.1 73.5 46.1 82.9

5× TPF 85.6 85.0 85.3 68.1 75.9 73.4 74.8 48.1 83.9
4 Syntax-aware Methods 85.8 85.5 85.6 68.7 76.3 74.5 75.4 49.3 84.3

Ensemble+ELMo

5× Baseline 87.2 86.8 87.0 70.8 77.7 75.8 76.7 50.4 85.6
5× TPF 87.5 87.0 87.3 71.1 78.6 76.5 77.5 52.5 86.0

4 Syntax-aware Methods 88.0 87.6 87.8 72.2 79.7 78.0 78.8 53.2 86.6

Table 2: Comparison with baseline model and all our syntax-aware methods on the CoNLL-2005 dataset. We report the results
in precision (P), recall (R), F1 and percentage of completely correct predicates (Comp.).

Dependency Parsing In recent years, neural network
based dependency parsing has achieved significant progress.
We adopt the state-of-the-art biaffine parser proposed by
Dozat and Manning (2017) in this work. We use the orig-
inal phrase-structure Penn Treebank (PTB) data to produce
the dependency structures for the CoNLL-2005 SRL data.
Following standard practice in the dependency parsing com-
munity, the phrase-structure trees are converted into Stan-
ford dependencies using the Stanford Parser v3.3.02. Since
the biaffine parser needs part-of-speech (POS) tags as inputs,
we use an in-house CRF-based POS tagger to produce auto-
matic POS tags on all the data. After training, the biaffine
parser achieves 94.3% parsing accuracy (LAS) on the WSJ
test dataset. Additionally, we use the 5-way jackknifing to
obtain the automatic POS tagging and dependency parsing
results of the training data.

ELMo Peters et al. (2018) recently propose to produce
contextualized word representations (ELMo) with an unsu-
pervised language model learning objective, and show that
simply using the learned external word representations as
extra inputs can effectively boost performance of a variety
of tasks, including SRL. To further investigate the effective-
ness of our syntax-aware methods, we build a stronger base-
line with the ELMo representations as extra input.

Evaluation We adopt the official script provided by
CoNLL-20053 for evaluation. We conduct significance test

2
https://nlp.stanford.edu/software/lex-parser.html

3
http://www.cs.upc.edu/˜srlconll/st05/st05.html

using the Dan Bikel’s randomized parsing evaluation com-
parer.

Implementation We implement the baseline and all the
syntax-aware methods with Pytorch 0.3.04.

Initialization and Hyper-parameters For the parameter
settings, we mostly follow the work of He et al. (2017). We
adopt the Adadelta optimizer with learning rate ρ = 0.95
and ε = 1e − 6, use a batchsize of 80, and clip gradients
with norm larger than 1.0. All the embedding dimensions
(word, predicate-indicator, syntactic label, pattern, and TPF)
are set to 100. All models are trained for 500 iterations on
the trained data and select the best iteration that has the peak
performance on the dev data.

Main Results
Table 2 shows the main results of different approaches on
CoNLL-2005 dataset. The results are presented in four ma-
jor rows. For the ensemble of “5× baseline” and “5× TPF”,
we randomly sample 4/5 of the training data and train one
model at each time. For the ensemble of 4 syntax-aware ap-
proaches, each model is trained on the whole training data.

Results of single models are shown in the first major
row. First, our re-implemented baseline of He et al. (2017)
achieves nearly the same results with those reported in their
paper. Second, the four syntax-aware approaches are simi-
larly effective and can improve the performance by 0.6 ∼
1.0 in F1 (combined). All the improvements are statistically

4
github.com/KiroSummer/Syntax-aware-Neural-SRL



significant (p < 0.001). Third, we find that the Tree-GRU
approach is slightly inferior to the other three. The possi-
ble reason is that Tree-GRU produces unified representa-
tions for the sentence without specific considerations of the
given predicate, whereas all other three approaches derive
predicate-specific representations.

Results of single models with ELMo are shown in the
second major row, in which each single model is enhanced
using the ELMo representations as extra inputs. We can see
that ELMo representations brings substantial improvements
over the corresponding baselines by 2.7 ∼ 3.2 in F1 (com-
bined). Compared with the stronger baseline w/ ELMo, SDP,
TPF, and PE w/ ELMo still achieve absolute and significant
(p < 0.001) improvement of 0.7, 0.8, and 0.3 in F1 (com-
bined), respectively. Tree-GRU w/ ELMo increases F1 by
2.0 on the out-of-domain Brown test data, but decreases F1
by 0.1 on the in-domain WSJ test data, leading to an over-
all improvement of 0.1 on combined F1 (p > 0.05). Simi-
larly to the results in the first major row, this again indicates
that the predicate-independent Tree-GRU approach may not
be suitable for syntax encoding in our SRL task, especially
when the baseline is strong.

Results of ensemble models are shown in the third major
row. Compared with the baseline single model, the baseline
ensemble approaches increase F1 (combined) by 1.3. The
F1 score of the “5× Baseline” of (He et al., 2017) is 83.2%,
whereas our re-implemented “5× Baseline” achieves 82.9%
F1. We guess the 0.3 gap may be caused by the random fac-
tors in 5-fold data split and parameter initialization. In our
preliminary experiments, we have run the single model of
He et al. (2017) for several times using different random
seeds for parameter initialization, and found about 0.1 ∼ 0.3
F1 variation. The ensemble of five TPF models further im-
proves F1 (combined) over the ensemble of five baselines
by 1.0 (p < 0.001). We choose the TPF method as a case
study since it consistently achieves best performances in all
scenarios. The ensemble of the four syntax-aware methods
achieves the best performance in this scenario, outperform-
ing the TPF ensemble by 0.4 F1. This indicates that the
four syntax-aware approaches are discrepant and thus more
complementary in the ensemble scenario than using a single
method.

Results of ensemble models with ELMo are shown in
the bottom major row, where each single model is enhanced
with ELMo representations before the ensemble operation.
Again, using ELMo representations as extra input greatly
improves F1 (combined) by 2.1 ∼ 2.7 over the correspond-
ing ensemble methods in the third major row. Similar to the
above findings, the ensemble of five TPF with ELMo im-
prove F1 (combined) by 0.4 (p < 0.001) over the ensem-
ble of five baselines with ELMo, and the ensemble of the
four syntax-aware methods with ELMo further increases F1
(combined) by 0.6.

Overall, we can conclude that the syntax-aware ap-
proaches can consistently improve SRL performance.

WSJ Brown Combi

Single

TPF w/ ELMo 86.9 76.8 85.6
TPF 84.1 72.9 82.6

Strubell et al. (2018) 83.9 72.6 -
He et al. (2017) 83.1 72.1 81.6
Tan et al. (2018) 84.8 74.1 83.4

Ensemble

4 Syn-a Methods w/ ELMo 87.8 78.8 86.6
4 Syntax-aware Methods 85.6 75.4 84.3

He et al. (2017) 84.6 73.6 83.2
Tan et al. (2018) 86.1 74.8 84.6

FitzGerald et al. (2015) 80.3 72.2 -

Table 3: Comparison with previous results.

Methods Devel WSJ Brown Combined
Baseline 81.5 83.2 71.6 81.6

TPF 82.5 84.1 72.9 82.6
TPF-Gold 88.4 89.6 79.8 88.3

Baseline w/ ELMo 85.5 86.3 74.7 84.8
TPF w/ ELMo 85.3 86.9 76.8 85.6

TPF-Gold w/ ELMo 89.8 91.1 82.2 89.9

Table 4: Upper-bound analysis of the TPF Method.

Comparison with Previous Works
Table 3 compare our approaches with previous works. In the
single-model scenario, the TPF approach outperforms both
He et al. (2017) and Strubell et al. (2018), and is only infe-
rior to Tan et al. (2018), which is based on the recently pro-
posed deep self-attention encoder (Vaswani et al., 2017). Us-
ing ELMo representations promotes our results as the state-
of-the-art. We discuss the work of Strubell et al. (2018) in
the related works section, which also makes use of syntactic
information.

In the ensemble scenario, the findings are similar, and
the ensemble of four syntax-aware approaches with ELMo
reaches new state-of-the-art performances.

Analysis
In this section, we conduct detailed analysis to better un-
derstand the improvements introduced by the syntax-aware
approaches. We use the TPF approach as a case study since
it consistently achieves best performances in all scenarios.
We sincerely thank Luheng He for the kind sharing of her
analysis scripts.

Using Gold-standard Syntax To understand the upper-
bound performance of the syntax-aware approaches, we use
the gold-standard dependency trees as the input and ap-
ply the TPF approach. Table 4 shows the results. The TPF
method with gold-standard parse trees brings a very large
improvement of 6.7 in F1 (combined) over the baseline with-
out using ELMo, and 5.1 when using ELMo. This shows
the usefulness and great potential of syntax-aware SRL ap-
proaches.
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Figure 7: F1 regarding surface distance between arguments
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Figure 8: Performance of CoNLL-2005 models after per-
forming oracle transformations.

Long-distance Dependencies To analyze the effect of
syntactic information regarding to the distances between ar-
guments and predicates, we compute and report F1 scores of
different sets of arguments according to their distances from
predicates, as shown in Figure 7. It is clear that larger im-
provements are obtained for arguments longer-distance ar-
guments, in both scenarios of with or without ELMo repre-
sentations. This demonstrates that syntactic knowledge ef-
fectively captures long-distance dependencies and thus is
most beneficial for arguments that are far away from predi-
cates.

Error Type Breakdown In order to understand error dis-
tribution of different approaches in terms of different types
of mistakes, we follow the work of He et al. (2017) and em-
ploy a set of oracle transformations on the system outputs to
observe the relative F1 improvements by fixing various pre-
diction errors incrementally. “Orig” corresponds to the F1
scores of the original model outputs. First, we fix the label
errors in the model outputs and the fixed results are shown
by “Fix Labels”. Specifically, if we find a predicted span
matches a gold-standard one but has a wrong label, then
we assign the correct label to the span in the model out-
puts. Then, based on the results of “Fix Labels”, we perform
“Move Core Arg.”. If a span is labeled as a core argument
(i.e., A0-A5), but the boundaries are wrong, then we move

the span to its correct boundaries. Third, based on the re-
sults of “Move Core Arg.”, we perform “Merge Spans”. If
two predicted spans can be merged to match a gold-standard
span, then we do so and assign the correct label. Fourth, we
preform “Split Spans. If a predicted span can be split into
two gold-standard spans, then we do so and assign correct
labels to them. Fifth, if a predicted span’s label matches an
overlapping gold span, we perform “Fix Span Boundary” to
correct its boundary. Sixth, we perform “Drop Arg.” to drop
the predicted arguments that doesn’t overlap with any gold
spans. Finally, if a gold argument doesn’t overlap with any
predicted spans, we perform “Add Arg.” Figure 8 shows the
results, from which we can see that 1) different approaches
have similar error distributions, among which labeling errors
account for the largest proportion, and span boundary errors
(split, merge, boundary) also have a large share; 2) using
automatic parse trees leads to consistent improvements over
all error types; 3) using ELMo representations also consis-
tently improves performance by large margin; 4) using gold
parse trees can effectively resolve almost all span boundary
(including merge and split) errors.

Related Work
Traditional discrete-feature based SRL models make heavy
use of syntactic information (Swanson and Gordon, 2006;
Punyakanok, Roth, and Yih, 2008). With the rapid develop-
ment of deep learning in NLP, researchers propose several
simple yet effective end-to-end neural network models with
little consideration of syntactic knowledge (Zhou and Xu,
2015; He et al., 2017; Tan et al., 2018).

Meanwhile, inspired by the success of syntactic features
in traditional SRL approaches, researchers also try to en-
hance neural network based SRL approaches by syntax. He
et al. (2017) show that large improvement can be achieved
by using gold-standard constituent trees as rule-based con-
straints during viterbi decoding. Strubell et al. (2018) pro-
pose a syntactically-informed SRL approach based on the
self-attention mechanism. The key idea is introduce an aux-
iliary training objective that encourages one attention head
to attend to its syntactic head word. They also use multi-
task learning on POS tagging, dependency parsing, and SRL
to obtain better encoding of the input sentence. We make
comparison with their results in Table 3. Swayamdipta et
al. (2018) propose a multi-task learning framework to incor-
porate constituent parsing loss into other semantic-related
tasks such as SRL and coreference resolution. They report
+0.8 F1 improvement over their baseline SRL model. Dif-
ferent from Swayamdipta et al. (2018), our work focuses on
dependency parsing and try to explicitly encode parse out-
puts to help SRL.

The dependency-based SRL task is started in CoNLL-
2008 shared task (Surdeanu et al., 2008), which aims to
jointly tackle syntactic and semantic dependencies. There
are also a few recent works on exploiting dependency trees
for neural dependency-based SRL. Roth and Lapata (2016)
proposes an effective approach to obtain dependency path
embeddings and uses them as extra features in traditional
discrete-feature based SRL. Marcheggiani and Titov (2017)



propose a dependency tree encoder based on a graph con-
volutional network (GCN), which has a similar function as
Tree-GRU, and stack the tree encoder over a sentence en-
coder based on multi-layer BiLSTMs. He et al. (2018) ex-
ploit dependency trees for dependency-based SRL by 1) us-
ing dependency label embeddings as extra inputs, and 2)
employing a tree-based k-th order algorithm for argument
pruning. Cai et al. (2018) propose a strong end-to-end neu-
ral approach for the dependency-based SRL based on deep
BiLSTM encoding and Biaffine attention. They use depen-
dency trees for argument pruning and find no improvement
over the syntax-agnostic counterpart.

Conclusions
This paper makes a thorough investigation and comparison
of four different approaches, i.e., Tree-GRU, SDP, TPF, and
PE, for exploiting syntactic knowledge for neural SRL. The
experimental results show that syntax is consistently help-
ful to improve SRL performance, even when the models
are enhanced with external ELMo representations. By uti-
lizing both ELMo and syntax-aware representations, our fi-
nal models achieve new state-of-the-art performance in both
single and ensemble scenarios on the benchmark CoNLL-
2005 dataset. Detailed analyses show that syntax helps the
most on arguments that are far away from predicates, due to
the long-distance dependencies captured by syntactic trees.
Moreover, there is still a large performance gap between us-
ing gold-standard and automatic parse trees, indicating that
there is still large room for further research on syntax-aware
SRL.
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