
UC Davis at SemEval-2019 Task 1: DAG Semantic Parsing with
Attention-based Decoder

Dian Yu
University of California, Davis
dianyu@ucdavis.edu

Kenji Sagae
University of California, Davis
sagae@ucdavis.edu

Abstract
We present a simple and accurate model for
semantic parsing with UCCA as our submis-
sion for SemEval 2019 Task 1. We propose an
encoder-decoder model that maps strings to di-
rected acyclic graphs. Unlike many transition-
based approaches, our approach does not use
a state representation, and unlike graph-based
parsers, it does not score graphs directly. We
encode input sentences with a bidirectional-
LSTM, and the decoder uses self-attention to
build a graph structure. The resulting parser is
simple and effective for semantic parsing with
reentrancy and discontinuous structures.

1 Introduction

Semantic parsing aims to capture structural re-
lationships between input strings and graph rep-
resentations of sentence meaning, going beyond
concerns of surface word order, phrases and re-
lationships. The focus on meaning rather than
surface relations often requires the use of reen-
trant nodes and discontinuous structures. Uni-
versal Conceptual Cognitive Annotation (UCCA)
(Abend and Rappoport, 2013) aims to support se-
mantic parsing with mappings between sentences
and their corresponding meanings in a framework
that is designed to be applicable across languages.

SemEval 2019 Task 1 (Hershcovich et al.,
2018b) focuses on semantic parsing of texts into
graphs consisting of terminal nodes that repre-
sent words, non-terminal nodes that represent in-
ternal structure, and labeled edges representing re-
lationships between nodes (e.g. participant, cen-
ter, linker, adverbial, elaborator), according to
the UCCA scheme. Annotated datasets are pro-
vided, and participants are evaluated in four set-
tings: English with domain-specific data, English
with out-of-domain data, German with domain-
specific data, and French with only development
and test data, but no training data. Additionally,

there are open and closed tracks, where the use of
additional resources is and is not allowed, respec-
tively. Our entry in the task is limited to the closed
track and the first setting, domain-specific English
using the Wiki corpus, where the relatively small
dataset (4113 sentences for training, 514 for devel-
opment, and 515 for testing) consists of annotated
sentences from English Wikipedia.

Our model follows the encoder-decoder archi-
tecture common in state-of-the-art neural parsing
models (Kitaev and Klein, 2018; Kiperwasser and
Goldberg, 2016b; Cross and Huang, 2016; Chen
and Manning, 2014). However, we propose a
very simple decoder architecture that relies only
on a recursive attention mechanism of the en-
coded latent representation without the need of
state encoding and model-optimal inference. Our
novel model achieved a macro-averaged F1-score
of 0.753 in labeled primary edges and 0.864 in
unlabeled primary edge prediction on the test set,
confirming the suitability of our proposed model
to the semantic parsing task.

2 Related work

Leveraging parallels between UCCA and known
approaches for syntactic parsing, Hershcovich
et al. (2017) proposed TUPA, a customized
transition-based parser with dense feature repre-
sentation. Based on this model, Hershcovich
et al. (2018a) used multitask learning effectively
by training a UCCA model along with similar
parsing tasks where more training data is avail-
able, such as Abstract Meaning Representation
(AMR) (Banarescu et al., 2013) and Universal De-
pendencies (UD) (Nivre et al., 2016). Due to
the requirements of reentrancy, discontinuity, and
non-terminals, other powerful parsers were shown
to be less suitable for parsing with UCCA (Hersh-
covich et al., 2017).



Figure 1: Illustration of the decoder for the beginning of a sentence, “Mariah Carey turned it down, and ...”.
Each vi represents the context embedding for each word i from the BiLSTM encoder. Words on edges represent
category labels between nodes, where A is participant and P is process. Circles represent nodes in the graph, each
with a pair in indices. Circles with 0 as the first index are terminal nodes, and circles with 1 as the first index
are non-terminal nodes. (1). Dashed green lines represent the attention mechanism for the word Carey, which
forms a continuous proper noun “Mariah Carey”. (2). Dashed red lines represent the attention mechanism for the
word down, which forms a discontinuous unit “turned ... down”. (3). Dotted blue lines represent the attention
mechanism for node1.4. The darker the color, the higher the attention score.

3 Parsing Model

Inspired by the success of BiLSTM models to pro-
vide feature representations with sequential data,
and the effectiveness of attention mechanisms
(Vaswani et al., 2017) applied to parsing (Kitaev
and Klein, 2018), our model uses a BiLSTM en-
coder, and self-attention as the decoder. The pro-
posed decoder takes the encoded representation as
the configuration without any additional feature
extraction, and serves a similar role as an oracle
and a transition-system in transition-based parsers.
Without the need to encode features and the cur-
rent parsing status, we represent each node in the
DAG (an example can be seen in Figure 1) using a
BiLSTM encoder.

3.1 Terminal Nodes

To mitigate sparsity due to the small amount of
training data available, we added part-of-speech
tags embeddings to word embeddings in termi-
nal nodes. Because the connections between ter-
minal nodes and non-terminal nodes often require
identification of named entities, we also added en-
tity type and case information as additional in-
formation. Given a sentence x = x1, ..., xn, the
vector for each input token is thus represented as
ui = emb(xi) ◦ emb(posi) ◦ emb(entity typei) ◦
emb(casei), where casei is 1 if the first character
of the word is capitalized and 0 otherwise. We
use pretrained word embeddings from fastText1

1https://fasttext.cc/

for emb(xi). POS tags and entity types were pre-
dicted using external models2 and provided in the
training corpus. Each word representation from
the encoder is vi = BiLSTM(ui). We assign
these contextual word embeddings as vectors for
terminal nodes.

3.2 Non-terminal Nodes

For non-terminal nodes with only one child which
is a terminal node, the representation is the same
as its corresponding terminal node, i.e. a contex-
tual word embedding from the BiLSTM encoder.
For other non-terminal nodes that have more than
one terminal children or non-terminal children, i.e.
represent more than one word in the text, we use a
span representation. Following Cross and Huang
(2016), we represent the span between xi, xj as
(fj − fi) ◦ (bi − bj) where f0, ..., fn and b0, ..., bn
are the output of the forward and backward direc-
tions in the BiLSTM, respectively, as a span ap-
proximation. Due to the nonlinear subtractions
from a recurrent neural network (RNN), we also
experimented with an additional BiLSTM on the
target span xi, xi+1, ..., xj , similar to the recur-
sive tree representations in (Socher et al., 2013;
Kiperwasser and Goldberg, 2016a) but replaced
the feed-forward network with an LSTM. In our
experiments with the small dataset in the closed
track of the English domain-specific track, this
method did not result in improved performance.

2https://spacy.io/

https://fasttext.cc/
https://spacy.io/


3.3 Attention Mechanism For Decoding
Our basic decoding model is inspired by the global
attention mechanism used in machine translation
by weighted averaging the encoded state in each
time step in the sequence (Luong et al., 2015). We
set a maximum sequence length and calculate the
probability for the left boundary index of the span
given the node representation vi,j where i ≤ j:

hspan =MLP (vi,j) (1)

pleft boundary = softmax(hspan) (2)

where MLP is a multilayer perceptron and hspan
is of size (1, max sequence length). We choose
argmaxi pleft boundary as the index of the left
boundary of the predicted span. Let jl denote the
index of the left most child of the node j (for ex-
ample, in figure 1, jl for node1.5 is 1 and jl for
node1.6 is 6)3. If i ≥ jl, then the node attends
to itself to indicate that a span cannot be created
yet (as is the case for node1.6 in figure 1). Oth-
erwise, there is a span that forms a semantic unit,
and we need to create a parent node, for example,
i = 1 for node1.4, so we create a new node1.5
which connects nodes within the span [1: 5], i.e.
node1.1, node1.3, and node1.4. We do this recur-
sively to attend to a previous index until the node
attends to itself. The illustration is shown in fig-
ure 1 with dotted blue lines. The algorithm is pre-
sented in Algorithm 1 below. We set the maximum
number of recurrence to be 7 to prevent excessive
node creation during inference.

Algorithm 1 Index-attention decoder
1: for in range(max recur) do
2: if i ≥ jl then
3: break
4: end if
5: hspan =MLP (vi,j)
6: iattn = argmax

i
softmax(hspan)

7: i = primary parent(iattn)l
8: end for

However, there are two limitations to this
method. One is the restriction of the maximum
sequence length, and the other is the distinction
between the indices and the actual words in each
sentence, which may cause the model to have cer-
tain words attend to specific indices regardless of
the actual context in the sentence.

3For simplicity, word indices start at 1 in the figure.

Motivated by the success of biaffine atten-
tion(Dozat and Manning, 2016) and self-attention
models (Vaswani et al., 2017), we replace the in-
dex attention decoder with a multiplication model
where we can leverage fast optimized matrix mul-
tiplication. Similar to the left most child, let jr
denote the index of the right most child of nodej .
vo = v[1 : j] where v is the output from the
encoder of size (sequence length, batch size, hid-
den size). The scoring function is defined as:

hi = ReLU(W × vi + b) (3)

ho = ReLU(W × vo + b) (4)

mm = matrix multiplication(hi, h
T
o ) (5)

pleft boundary = softmax(mm) (6)

Compared to the index attention decoder above,
this decoder considers both the index and the span
representation and thus is more flexible and ro-
bust to new texts. The recurrence call remains the
same by replacing line 5 and 6 in Algorithm 1 with
equations 3− 6.

3.4 Label Prediction
Ideally the encoder will capture the information
from the whole sentence so that we only need the
current span to predict its label (since the span has
the context information from both sides). How-
ever, for a relatively long sentence, as shown in
previous research with RNN models, the contex-
tual information is lost. For instance, for the sen-
tence “It announced Carey returned to the stu-
dio to start ... ” in which “Carey returned to
the studio” should be labeled as a participant (A)
instead of a scene (H) according to the context.
Therefore, similar to the label prediction prob-
lem with dependency parsers, we use a MLP to
predict the label of a span vi,j given its context
p = primary parent(vi,j).

h = ReLU(W 1
l × (p ◦ vi,j) + b1l ) (7)

l = argmax
l

softmax(W 2
l ∗ h+ b2l ) (8)

We also experimented with only using span repre-
sentation as seen in constituency parsing (Gaddy
et al., 2018) by replacing (p ◦ vi,j) with vi,j in
equation 7. This increased the F1 score on the de-
velopment set by 1.4 points. We conjecture that
this is due to the limited amount of training data,
which makes it more difficult to learn noisier rep-
resentations.



3.5 Remote Edges
We predict remote edges the same way as the the
matrix multiplication decoder for primary edges
with a different BiLSTM encoder to avoid confu-
sion between attention to primary edges and re-
mote edges.

3.6 Discontinuous Unit
After finding the left boundary of the current span
unit as shown in section 3.3, we use two MLPs
for binary classification to check (1) if the span
forms a proper noun with which we need to com-
bine multiple terminal nodes to one non-terminal
node (as “Mariah Carey” in figure 1) and (2) if the
span forms a discontinuous unit (as “turn ... down”
in figure 1).

probpropn =W 2
p ×ReLU(W 1

p × vi,j + b1p) + b2p
(9)

probdiscont =W 2
d ×ReLU(W 1

d × vi,j + b1d) + b2d
(10)

If the node span attends to a node in the left
and the model predicts a proper noun, we will cre-
ate a non-terminal node and links all the terminal
nodes i, i+1, ..., j as its terminal children (shown
as dashed green lines in figure 1).

If the model predicts that the span is a discon-
tinuous unit, instead of connecting all the terminal
nodes as its children, the new created node only
connects nodei and nodej , and do the recurrence
checks afterwards as shown in Algorithm 1 (illus-
trated as dashed red lines in figure 1).

3.7 Training and Inference
During training, nodei attends to the left most
child of its primary parent (nodep) recursively un-
til nodep is not the left most child of nodep’s par-
ent. Because a span representation contains infor-
mation from both left to right and right to left,
nodei with the highest attention score not only
contains the embedding of its terminal node, but
also the span between index i and j in the text. We
use cross entropy loss to jointly train for embed-
dings, the BiLSTM encoder, and the decoder.

For inference, we take the output of each token
in the text from the BiLSTM encoder as input and
create a non-terminal node for each terminal node.
We create a new node when the token embedding
attends to a different token outside of the current
span boundary. The recurrence algorithm for each
newly created non-terminal node shown in Algo-
rithm 1 is applied.

4 Experiment and Results

For the encoder, we use a 2-layer, 500 dimensional
BiLSTM with 0.2 dropout. The word embedding
size is 300 with feature embedding size of 20 each
(pos tagging, entity type, and case information).
We use Adam optimizer (Kingma and Ba, 2014)
with β2 set to 0.9 as suggested by Dozat and Man-
ning (2016). Development set is used for early
stopping. Because of the small dataset (4113 train-
ing sentences), the model overfits after 4 epochs.

5 Results

Our official submission had an F1 score of 0.73
on labeled primary edge prediction, on par with
a strong baseline of 0.733 (Hershcovich et al.,
2017). After tuning on the development set (in-
creasing the recursion limit, using current span
only as explained in section 3.4, and changing β2
in section 4), we obtained development F1 score
of 76.37/87.14 (labeled/unlabeled), and 75.3/86.4
on the test set.

Since there are normally 0 or 1 remote edges in
each sentence in the training corpus, the remote
edge prediction model is not as effective. We ob-
tained F1 score of 44.7/44.7 (labeled/unlabeled)
for remote edge prediction on the test set. Still,
the model captures some remote relations. For
example, the node “gained weight” is predicted
to point to “Carey” where the annotated child is
“she” in the sentence “Additionally, Carey’s newly
slimmed figure began to change, as she stopped
her exercise routines and gained weight”. Discon-
tinuous unit prediction also suffers from the prob-
lem of insufficient training samples.

6 Conclusion

This paper describes the system that the UC Davis
team submitted to SemEval 2019 Task 1. We pro-
pose a recursive self-attention decoder with a sim-
ple architecture. Our model is effective in UCCA
semantic parsing, ranking third in the close track
in-domain task with modest fine-tuning, highlight-
ing the suitability of our approach.

Acknowledgments

This work was supported by the National Science
Foundation under Grant No. 1840191. Any opin-
ions, findings, and conclusions or recommenda-
tions expressed are those of the authors and do not
necessarily reflect the views of the NSF.



References
Omri Abend and Ari Rappoport. 2013. Universal con-

ceptual cognitive annotation (ucca). In ACL (1),
pages 228–238. The Association for Computer Lin-
guistics.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking.

Danqi Chen and Christopher D. Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In EMNLP, pages 740–750. ACL.

James Cross and Liang Huang. 2016. Span-based
constituency parsing with a structure-label system
and provably optimal dynamic oracles. CoRR,
abs/1612.06475.

Timothy Dozat and Christopher D. Manning. 2016.
Deep biaffine attention for neural dependency pars-
ing. CoRR, abs/1611.01734.

David Gaddy, Mitchell Stern, and Dan Klein. 2018.
What’s going on in neural constituency parsers? an
analysis. CoRR, abs/1804.07853.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2017. A transition-based directed acyclic graph
parser for UCCA. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics, ACL 2017, Vancouver, Canada, July 30
- August 4, Volume 1: Long Papers, pages 1127–
1138.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2018a. Multitask parsing across semantic represen-
tations. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguis-
tics, ACL 2018, Melbourne, Australia, July 15-20,
2018, Volume 1: Long Papers, pages 373–385.

Daniel Hershcovich, Leshem Choshen, Elior Sulem,
Zohar Aizenbud, Ari Rappoport, and Omri Abend.
2018b. Semeval 2019 shared task: Cross-lingual se-
mantic parsing with UCCA - call for participation.
CoRR, abs/1805.12386.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Eliyahu Kiperwasser and Yoav Goldberg. 2016a. Easy-
first dependency parsing with hierarchical tree lstms.
CoRR, abs/1603.00375.

Eliyahu Kiperwasser and Yoav Goldberg. 2016b. Sim-
ple and accurate dependency parsing using bidi-
rectional LSTM feature representations. CoRR,
abs/1603.04351.

Nikita Kitaev and Dan Klein. 2018. Constituency
parsing with a self-attentive encoder. CoRR,
abs/1805.01052.

Minh-Thang Luong, Hieu Pham, and Christo-
pher D. Manning. 2015. Effective approaches to
attention-based neural machine translation. CoRR,
abs/1508.04025.

Joakim Nivre, Marie-Catherine de Marneffe, Filip
Ginter, Yoav Goldberg, Jan Hajic, Christopher D.
Manning, Ryan T. McDonald, Slav Petrov, Sampo
Pyysalo, Natalia Silveira, Reut Tsarfaty, and Daniel
Zeman. 2016. Universal dependencies v1: A mul-
tilingual treebank collection. In Proceedings of
the Tenth International Conference on Language
Resources and Evaluation LREC 2016, Portorož,
Slovenia, May 23-28, 2016.

R Socher, A Perelygin, J.Y. Wu, J Chuang, C.D. Man-
ning, A.Y. Ng, and C Potts. 2013. Recursive deep
models for semantic compositionality over a senti-
ment treebank. EMNLP, 1631:1631–1642.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. CoRR, abs/1706.03762.

http://dblp.uni-trier.de/db/conf/acl/acl2013-1.html#AbendR13
http://dblp.uni-trier.de/db/conf/acl/acl2013-1.html#AbendR13
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2014.html#ChenM14
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2014.html#ChenM14
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2014.html#ChenM14
http://arxiv.org/abs/1612.06475
http://arxiv.org/abs/1612.06475
http://arxiv.org/abs/1612.06475
http://arxiv.org/abs/1611.01734
http://arxiv.org/abs/1611.01734
http://arxiv.org/abs/1804.07853
http://arxiv.org/abs/1804.07853
https://doi.org/10.18653/v1/P17-1104
https://doi.org/10.18653/v1/P17-1104
https://aclanthology.info/papers/P18-1035/p18-1035
https://aclanthology.info/papers/P18-1035/p18-1035
http://arxiv.org/abs/1805.12386
http://arxiv.org/abs/1805.12386
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1603.00375
http://arxiv.org/abs/1603.00375
http://arxiv.org/abs/1603.04351
http://arxiv.org/abs/1603.04351
http://arxiv.org/abs/1603.04351
http://arxiv.org/abs/1805.01052
http://arxiv.org/abs/1805.01052
http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1508.04025
http://www.lrec-conf.org/proceedings/lrec2016/summaries/348.html
http://www.lrec-conf.org/proceedings/lrec2016/summaries/348.html
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762

