CUNY-PKU Parser at SemEval-2019 Task 1:
Cross-lingual Semantic Parsing with UCCA

Computer Science Department, 'Graduate Center and oHunter College, City University of New York

Weimin Lyu', Sheng Huang?, Abdul Rafae Khan', Shengqiang Zhang' , Weiwei Sun?, Jia Xu'c

{wlyu, akhand4}@gradcenter.cuny.edu, Jia.Xufhunter.cuny.edu

Hnstitute of Computer Science and Technology, Peking University
{huangsheng, ws, sq.zhang}@pku.edu.cn

Abstract

This paper describes the systems of the
CUNY-PKU team in “SemEval 2019 Task
1: Cross-lingual Semantic Parsing with
UCCA” (SemEval, 2019). We introduce a
novel model by continuously learning MLP
initialized with BiLSTM. Then, we en-
semble multiple system-outputs by repars-
ing. In particular, we introduce a new
decoding algorithm for building the UCCA
representation. Our system won the first
place in one track (French-20K-Open), sec-
ond places in four tracks (English-Wiki-Open,
English-20K-Open, German-20K-Open, and
German-20K-Closed), and third place in one
track (English-20K-Closed), among all seven
tracks.

1 Introduction

We participate in all seven tracks in Cross-lingual
Semantic Parsing at SemEval 2019. Our submis-
sion systems (Lyu, 2019) are based on BiLSTM
using TUPA (Hershcovich et al., 2017a, 2018).

Then, we built a second single parser using Bil-
STM (Bi-directional LSTM) and Multi-Layer Per-
ceptron (MLP) with TUPA (Hershcovich et al.,
2017a, 2018). Most importantly, we introduce a
new model Cascaded BiLSTM by first pre-training
the BILSTM and MLP model and then to con-
tinue training another MLP model. The cascaded
BiLSTM parser significantly enhances the parsing
accuracy on all tasks. We also complete a Self-
Attentive Constituency Parser (Kitaev and Klein,
2018a,b) as comparison. Finally, we ensemble dif-
ferent parsers with a reparsing strategy (Sagae and
Lavie, 2006). In particular, we introduce a novel
algorithm based on dynamic programming to per-
form inference for the UCCA representation. This
decoder can also be utilized as a core engine for a
single parser.

In the post-evaluation stage, our improved sys-
tems are ranked first in two tracks (French-20K-
Open and English-Wiki-Open) and second in the
other five tracks.

We will describe our systems in detail, includ-
ing three single parsers in Section 2 and a voter in
Section 3. We focus on two novel technical con-
tributions: the Cascaded BiLSTM model and the
Reparsing strategy. In Section 4 we will present
experimental setup and results.

2 Single Parsers

2.1 TUPA Parsers

The TUPA parser (Hershcovich et al.,, 2017a)
builds on discontinuous constituency and depen-
dency graph parsing and makes some improve-
ments especially for the UCCA representation.
The English parsing is based on Hershcovich
et al. (2017a), while French and German parsing
is based on Hershcovich et al. (2018).

It has been shown that the choice of model
plays an important role in transition-based pars-
ing (Hershcovich et al., 2017b). For TUPA, we
built parsers with different models: MLP, BiL-
STM, and also invent a new architecture, viz. Cas-
caded BiLSTM. The three single parsers are de-
scribed as the following:

The MLP parser (Hershcovich et al., 2017b)
applies a feedforward neural network with dense
embedding features to predict optimal transitions
given particular parser states. This parser adopts a
similar architecture to Chen and Manning (2014).

The BIiLSTM parser (Hershcovich et al.,
2018) applies a bidirectional LSTM to learn con-
textualized vector-based representations for words
that are then utilized for encoding a parser state,
similarly to Kiperwasser and Goldberg (2016).
The red box in Figure 1 shows the architecture
of BiLSTM model, indicating that the represen-

Parser State

Figure 1: Illustration of the Cascaded BiLSTM model.
Top: parser state. Bottom: BiLTSM with two MLP
architectures. The red box represents BiLSTM (Her-
shcovich et al., 2018), and the blue box represents a
MLP that we add to the BiLSTM architecture. Vector
representation for the input tokens is computed by two
layers of bidirectional LSTMs then fed into the double
MLP with Softmax to select the next transition.

tations after BILSTM are fed into a Multiple-layer
perceptron.

The Cascaded BiLLSTM parser combines the
above two parsing models, which is the main nov-
elty of this work. We use a double MLP model
instead of a single MLP model after the BiLSTM
structures. This helps to create a more complete
and transition-based parser. Figure 1 shows the ar-
chitecture of Cascaded BiLSTM model.

2.2 Phrase Constituency Parser

We also built a Constituency Parser as compari-
son, which uses a self-attentive architecture that
makes explicit the manner considering informa-
tion propagating between different locations in the
sentences (Kitaev and Klein, 2018a) (Kitaev and
Klein, 2018b). The constituency parser uses pars-
ing tree structures as input and output. Therefore,
we convert the phrase structure tree format into
UCCA XML formation and vice versa.

3 The Reparsing System

The reparsing system (voter) takes multiple single
parser (as in Section 2) results as input and pro-
duces a single, hopefully, improved UCCA graph
as output. Briefly, each input UCCA graph is en-
coded to a chart of scores for standard CKY de-
coding. In this step, we utilize a number of auxil-

iary labels to encode remote edges and discontinu-
ous constructions. These scores are summed up to
get a new chart, which is used for CKY decoding
for an immediate tree representation as the voting
result. An immediate tree is then enhanced with
reference relationships. Finally, a UCCA graph is
built via interpreting auxiliary labels.

Span representation Graph nodes in a UCCA
graph naturally create a hierarchical structure
through the use of primary edges. Following this
tree structure, we give the definition of span of
nodes.

Definition 1. The span of node z is:

1. empty if z is an implicit node;

2. [p, p+1)if x is a leaf node but not an implicit
node, where p is the position of the lexical unit
corresponding to x;

3. the union of spans of x’s children, otherwise.

Assuming that each span of nodes is consecu-
tive (we will deal with nonconsecutive spans in
Section 3). We encode the label of edge from z’s
parent to = as the label of span of x. If there
are some implicit nodes in x’s children, the la-
bels of edges from z to them are also encoded
by the label of the span of x. If the span of z is
the same as x’s parent, the label of this span will
be encoded ordered. This process is well-defined
due to the acyclic graph structure. Each parser is
assigned a weight to indicate its contribution to
reparsing. The spans with labels encoded from a
UCCA graph are assigned the same score accord-
ing to which parser they come from. Thus, there
is a set of scored spans for each UCCA graph.
Following the parsing literature, we call this set a
chart. We merge multiple charts produced by dif-
ferent parsers to a single chart simply by adding
the corresponding scores.

Handling Remote Edges A remote edge with
label L from node z to node y is equal to a pri-
mary edge with label L from x to an implicit node,
which is referred to node y. Hence, if we can find
the relationships of references, the remote edges
are able to be recovered.

Since all primary edges from nodes to their par-
ent are encoded in labels of spans, each node could
be represented as part of the label of a span. We
encode each reference of a remote edge as a pair of
two nodes with a score. After building all primary
edges through dynamic programming, we search
for available references with the maximum score

X X
/XE= /N
y Yy -tz

Figure 2: Remove nonconsecutive spans

in each implicit node greedily and leverage these
references to recover remote edges.

Handling Discontinuous Spans Discontinuous
spans are removed by repeating the following
steps:

Step 1. Find a node x with a nonconsecutive
span with the minimum starting point and min-
imum height, supposed its consecutive sub-span
with minimum starting point is [a, b).

Step 2. Find a node y with a consecutive span
with starting point b and maximum height, sup-
posed the primary edge from y’s parent to y is e.

Step 3. Create a node z with a special type MIR-
ROR and create a primary edge with the label of e
from y’s parent to z. Remove the primary edge
e and create a primary edge with a special label
FAKE from x to y.

After each iteration, the span of y is added to
z, and the sum of the length of nonconsecutive
spans decreases. Each primary edge in an origi-
nal UCCA graph can only be removed once. To
that end, the running time of this algorithm is lin-
ear in the number of lexical units. If all references
of MIRROR nodes are correctly predicted, the ex-
pected UCCA graph will be obtained. In this way,
remote edges can be handled.

4 [Experiments

4.1 Data Statistics

The semantic parsing task is carried out in three
languages: English, German and French, includ-
ing three training data sets and parallel four test
data sets (SemEval, 2019). For English data,
we use the Wikipedia UCCA corpus (henceforth
Wiki) as training and development data, testing
on English UCCA Wikipedia corpus as the in-
domain test. Meanwhile, English UCCA Twenty
Thousand Leagues Under the Sea English-French-
German parallel corpus (henceforth 20K Leagues)
serves as an out-of-domain test set. For German
data, we use 20K Leagues corpus for train, devel-
opment, and test sets. For French data, they pro-

Training
Closed Open
En-Wiki | 4113 5132 514 515
En-20K 0 5132 0 492
Ge-20K | 5211 6360 651 632
Fr-20K 15 547 238 239

Tracks Dev Test

Table 1: Sentence number in training, dev, and test sets
for English, German and French UCCA data sets.

vide only limited training data, along with devel-
opment and test data sets.

Table 1 shows the sentences number of data sets
for all three languages. We use the closed track
data and UCCA’s annotation resources (SemEval,
2019) for open tracks. We merge those resources
and build our open track data (Lyu, 2019).

4.2 TUPA Parsers

We build MLP and BiLSTM systems using
TUPA (Hershcovich et al., 2017b). For Cas-
caded BiLSTM model, we add another MLP af-
ter the BiLSTM model, which forms a cascaded
BiSLTM. For closed tracks, we train models based
on the gold-standard UCCA annotation from offi-
cial resources. For open tracks, We use additional
UCCA data from other open sources as training
data set. We also generate synthetic data by auto-
matically translating text (Khan et al., 2018) and
its parsing labels across languages in our on-going
work.

Table 2 shows the results for four models in dif-
ferent tracks. The italicized values are our offi-
cial submission. However, we have made some
improvement after the Evaluation Phrase, and the
bold results are our best results. The first three
models are single systems and the fourth model
(Ensembled) ensembles different frameworks by
reparsing systems. The “baseline” represents the
baseline that competition provides for reference.

By using feedforward Neural Network and em-
bedding features, MLP models get the lowest
scores. BiLSTM models achieve better results
than MLP models in F1 scores, both in the in-
domain and out-of-domain data sets. However, the
combination of BiSLTM and MLP models (Cas-
caded BiLSTM model) performs best among the
three models in all results of single systems.

Our in-house reparsing system ensembles the
above parsers as described in Section 3. We can
see that ensemble results are better at closed track,
but not as good as the best results by Cascaded
BiLSTM at Open track.

Tracks MLP BiLSTM Cascaded BILSTM Ensembled baseline
En-Wiki | 0.621 0.718 0.721 0.728 0.728

closed | En-20K | 0.609 0.669 0.673 0.681 0.672
Ge-20K - 0.797 - - 0.731

En-Wiki | 0.688 0.800 0.843 - 0.735

open En-20K | 0.643 0.739 0.764 0.756 0.684
Ge-20K - 0.841 - - 0.791

Fr-20K - 0.796 - - 0.487

Table 2: F1 scores for both closed and open tracks in SemEval Task 1 2019 competition. The italic text represents
our official submission in competition and the bold text represents our best F1 scores.

Open Tracks | F1 Scores
English-Wiki 0.75
English-20K 0.785

Table 3: F1 scores on unlabeled data.

4.3 Phrase Constituency Parser

First, we use Benepar (Kitaev, 2019), a parsing
tool using out-of domain pre-trained models to
predict the labels, the outputs are parsing tree
structures.

Second, we convert the constituency parsing
tree structure to Conllu Format. We develop a one-
shot tool to improve the efficiency of conversion
based on TreebankPreprocessing (Hankcs, 2019),
which can automatically convert a batch of files in
one directory.

Finally, we convert Conllu format to UCCA
XML using format (danielhers, 2019).

We only experiment on English-Wiki and
English-20K open track, and the results are pretty
bad, as shown in Table 3. We hypothesize there are
two reasons: 1. The conversion process could un-
avoidably cause accuracy loss. 2. The third-party
pre-trained models are not as efficient as the mod-
els trained directly on the specific UCCA data.

To test the accuracy on unlabeled data and to
evaluate how many losses are there during the con-
version process, we evaluate the accuracy in the
parsing tree structure phrase before the conver-
sion. We experimentally validate our system on
the English Wiki data set. We use official training
data set as training data, splitting official dev set
into two parts and separately serving as our dev
set and test set. We also use two models of con-
stituency parser: ELMO and CharsLSTM, tested
on Penn Treebank (Cross and Huang, 2019) data.

Table 4 indicates that, for Penn Treebank data
sets, CharsLSTM model’s F1 score achieves 92.21

Models test sets dev sets
CharsLSTM 91.96 92.21
ELMO 94.31 94.75

Table 4: F1 scores for two constituency parsers on both
Penn Treebank dev and test data sets.

on dev data set, with F1 score 91.96 on the test
dataset. Using ELMo, The dev dataset’s F1 score
achieves 94.75, with F1 score achieves 94.31 on
test data set.

5 Summary

Our submission systems mainly contain a BilL-
STM, an MLP, and a cascaded BiLSTM parser, as
well as a voted system of above. Our final sys-
tem ranks first in two tracks, French-20K-Open
and English-Wiki-Open, and the second place in
the other five tracks in the post-evaluation.

Contributions and Acknowledgements

Weimin Lyu: built all TUPA Parsers, a self-
attentive Parser, convert UCCA graph as con-
stituency tree, verify the voting systems, and
draft the paper. Sheng Huang and Shengqiang
Zhang: built the reparsing system and UCCA-
Dependency graph transformer. Abdul Rafae
Khan: built cross-lingual parsers by generating
synthetic data with machine translation. Weiwei
Sun: extensively supervised PKU team, and Jia
Xu: closely supervised CUNY team, in algorithms
and experiments. This research was partially
funded by National Science Foundation (NSF)
Award No. 1747728 and National Science Foun-
dation of China (NSFC) Award No. 61672524.
We thank the support of Hunter College Provost
Office, Dean’s office, and the Computer Science
Department at CUNY Graduate Center.

References

Dangi Chen and Christopher Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Proceedings of the 2014 conference on

empirical methods in natural language processing
(EMNLP), pages 740-750.

James Cross and Liang Huang. 2019. Span-based con-
stituency parser.

danielhers. 2019. Hebrew university nlp lab, convert
scripts.

Hankcs. 2019. Python scripts preprocessing penn tree-
bank and chinese treebank.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2017a. A transition-based directed acyclic graph
parser for ucca. In Proc. of ACL, pages 1127-1138.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2017b. A transition-based directed acyclic graph
parser for ucca. arXiv preprint arXiv:1704.00552.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2018. Multitask parsing across semantic representa-
tions. arXiv preprint arXiv:1805.00287.

Abdul Khan, Subhadarshi Panda, Jia Xu, and Lam-
pros Flokas. 2018. Hunter nmt system for wmt18
biomedical translation task: Transfer learning in
neural machine translation. In Proceedings of the
Third Conference on Machine Translation: Shared
Task Papers, pages 655-661.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional Istm feature representations. Transactions
of the Association for Computational Linguistics,
4:313-327.

Kitaev. 2019. High-accuracy nlp parser with models
for 11 languages.

Nikita Kitaev and Dan Klein. 2018a. Constituency
parsing with a self-attentive encoder. arXiv preprint
arXiv:1805.01052.

Nikita Kitaev and Dan Klein. 2018b. Multilingual
constituency parsing with self-attention and pre-
training. arXiv preprint arXiv:1812.11760.

Weimin Lyu. 2019. Github:semeval-taskl.

Kenji Sagae and Alon Lavie. 2006. Parser combination
by reparsing. In Proceedings of the Human Lan-
guage Technology Conference of the NAACL, Com-
panion Volume: Short Papers.

SemEval. 2019. Homepage of semeval 2019 task 1:
Cross-lingual semantic parsing with ucca.

https://github.com/jhcross/span-parser
https://github.com/jhcross/span-parser
https://github.com/huji-nlp/semstr/blob/master/semstr/convert.py
https://github.com/huji-nlp/semstr/blob/master/semstr/convert.py
https://github.com/hankcs/TreebankPreprocessing
https://github.com/hankcs/TreebankPreprocessing
http://aclweb.org/anthology/P17-1104
http://aclweb.org/anthology/P17-1104
https://github.com/nikitakit/self-attentive-parser
https://github.com/nikitakit/self-attentive-parser
https://github.com/weimin17/semEval-taks1
http://aclweb.org/anthology/N06-2033
http://aclweb.org/anthology/N06-2033
https://competitions.codalab.org/competitions/19160
https://competitions.codalab.org/competitions/19160

